Senior Machine Learning Engineer at NVIDIA developing algorithms for inference and compiler stack. Collaborating across hardware and software teams for neural network workloads optimization.
Responsibilities
Build, develop, and maintain high-performance runtime and compiler components, focusing on end-to-end inference optimization.
Define and implement mappings of large-scale inference workloads onto NVIDIA’s systems.
Extend and integrate with NVIDIA’s SW ecosystem, contributing to libraries, tooling, and interfaces that enable seamless deployment of models across platforms.
Benchmark, profile, and monitor key performance and efficiency metrics to ensure the compiler generates efficient mappings of neural network graphs to our inference hardware.
Collaborate closely with hardware architects and design teams to feedback software observations, influence future architectures, and codesign features that unlock new performance and efficiency points.
Prototype and evaluate new compilation and runtime techniques, including graph transformations, scheduling strategies, and memory/layout optimizations tailored to spatial processors.
Publish and present technical work on novel compilation approaches for inference and related spatial accelerators at top tier ML, compiler, and computer architecture venues.
Requirements
MS or PhD in Computer Science, Electrical/Computer Engineering, or related field, or equivalent experience, with 5 years of relevant experience.
Strong software engineering background with proficiency in systems level programming (e.g., C/C++ and/or Rust) and solid CS fundamentals in data structures, algorithms, and concurrency.
Hands on experience with compiler or runtime development, including IR design, optimization passes, or code generation.
Experience with LLVM and/or MLIR, including building custom passes, dialects, or integrations.
Familiarity with deep learning frameworks such as TensorFlow and PyTorch, and experience working with portable graph formats such as ONNX.
Solid understanding of parallel and heterogeneous compute architectures, such as GPUs, spatial accelerators, or other domain specific processors.
Strong analytical and debugging skills, with experience using profiling, tracing, and benchmarking tools to drive performance improvements.
Excellent communication and collaboration skills, with the ability to work across hardware, systems, and software teams.
Ideal candidates will have direct experience with MLIR based compilers or other multilevel IR stacks, especially in the context of graph based deep learning workloads.
Machine Learning Resident for Theragraph involved in developing solutions for health datasets. Collaborating in a cross - functional team under the mentorship of an Amii Scientist.
Senior ML Engineer leading the scaling and innovation of machine learning initiatives at Wisedocs. Collaborating with other engineers to integrate the ML system into the platform for insurance tech.
Lead ML Engineer developing scalable data pipelines and ML systems for Newfold Digital. Collaborate with cross - functional teams using Python, SQL, and cloud ML platforms in an applied ML environment.
Senior Machine Learning Engineer designing and optimizing ML/AI systems for digital forensic tools. Collaborating with cross - functional teams to lead initiatives and drive innovation in digital investigations.
Senior MLOps Engineer focusing on applied MLOps for CreatorIQ, bridging data science and production - grade efficiency. Responsible for annotation workflows and cost - efficient model evaluation.
Senior AI/ML Engineer leading design and deployment of high - impact AI solutions at CloudWerx. Bridging predictive modeling with next - generation Agentic AI to solve client challenges.
Machine Learning Resident developing AI - assisted tools for geotechnical site characterization. Involves collaboration with scientists and engineers to develop predictive ML models.
Machine Learning Resident at Hines Health Services focusing on AI - driven medical workforce solutions. Supporting the development of scalable, AI - powered recruitment platforms over a 6 - month residency.
Software Engineer, Machine Learning developing next - generation AI technologies for clinical trial platforms. Building scalable data pipelines, optimizing model performance, and collaborating with cross - functional teams in a hybrid setting.
Senior Machine Learning Engineer at BenchSci focusing on developing machine learning models for biomedical applications. Collaborating with a team to enhance scientific experiments through AI - driven solutions.